Czyszczenie danych w Pythonie. Receptury. Nowoczesne techniki i narzędzia Pythona do wykrywania i eliminacji zanieczyszczeń oraz wydobywania kluczowych cech z danych
Helion
Przetwarzanie dużych ilości danych daje wiedzę, która leży u podstaw istotnych decyzji podejmowanych przez organizację. Pozwala to na uzyskiwanie znakomitych efektów: techniki wydobywania wiedzy z danych stają się coraz bardziej wyrafinowane. Podstawowym warunkiem sukcesu jest uzyskanie odpowiedniej jakości danych. Wykorzystanie niespójnych i niepełnych informacji prowadzi do podejmowania błędnych decyzji. Konsekwencją mogą być straty finansowe, stwarzanie konkretnych zagrożeń czy uszczerbek na wizerunku. A zatem oczyszczanie jest wyjątkowo ważną częścią analizy danych.
Ta książka jest praktycznym zbiorem gotowych do użycia receptur, podanych tak, aby maksymalnie ułatwić proces przygotowania danych do analizy. Omówiono tu takie kwestie dotyczące danych jak importowanie, ocena ich jakości, uzupełnianie braków, porządkowanie i agregacja, a także przekształcanie. Poza zwięzłym omówieniem tych zadań zaprezentowano najskuteczniejsze techniki ich wykonywania za pomocą różnych narzędzi: Pandas, NumPy, Matplotlib czy SciPy. W ramach każdej receptury wyjaśniono skutki podjętych działań. Cennym uzupełnieniem jest zestaw funkcji i klas zdefiniowanych przez użytkownika, które służą do automatyzacji oczyszczania danych. Umożliwiają one też dostrojenie procesu do konkretnych potrzeb.
W książce znajdziesz receptury, dzięki którym:
- wczytasz i przeanalizujesz dane z różnych źródeł
- uporządkujesz dane, poprawisz ich błędy i uzupełnisz braki
- efektywnie skorzystasz z bibliotek Pythona
- zastosujesz wizualizacje do analizy danych
- napiszesz własne funkcje i klasy do automatyzacji procesu oczyszczania danych
Prawdziwą wartość mają tylko oczyszczone i spójne dane!
Szczegóły
Tytuł: Czyszczenie danych w Pythonie. Receptury. Nowoczesne techniki i narzędzia Pythona do wykrywania i eliminacji zanieczyszczeń oraz wydobywania kluczowych cech z danychAutor: Michael Walker
Wydawnictwo: Helion
ISBN: 9788328380295
Tytuł oryginału: Python Data Cleaning Cookbook: Modern techniques and Python tools to detect and remove dirty data and extract key insights
Tłumacz: Filip Kamiński
Języki: polski
Rok wydania: 2021
Ilość stron: 420
Format: 16.8x23.7cm
Oprawa: Miękka
Waga: 0.53 kg